Scode network's Python is perhaps the most popular choice for beginner machine learning programmers. Python is a programming language that offers many libraries and frameworks to simplify development and cut development time. There are numerous machine learning and artificial intelligence libraries that you can use to automate tasks and analyze data. If you've ever wanted to learn about machine learning, Our training course will teach you the basic concepts and algorithms necessary for this exciting field. You'll learn how to build ensembles and predictive models, and you'll learn to utilize Python's libraries to implement machine learning algorithms. You'll also develop a real-world project to present to your classmates and faculty. Afterwards, you'll have to submit your completed project for peer evaluation.
Machine Learning
SCODE NETWORK INSTITUTE Machine Learning with Python – Basics .................................................................................................1 What is Machine Learning? ....................................................................................................................1 Need for Machine Learning ....................................................................................................................1 Why & When to Make Machines Learn?................................................................................................1 Machine Learning Model........................................................................................................................2 Challenges in Machines Learning............................................................................................................4 Applications of Machines Learning.........................................................................................................4 1. Machine Learning with Python – Python Ecosystem............................................................................6 An Introduction to Python ......................................................................................................................6 Strengths and Weaknesses of Python ....................................................................................................6 Installing Python .....................................................................................................................................7 Why Python for Data Science? ...............................................................................................................9 Components of Python ML Ecosystem.................................................................................................10 Jupyter Notebook .................................................................................................................................10 Types of Cells in Jupyter Notebook.......................................................................................................12 2. Python Machine Learning – Methods for Machine Learning .............................................................17 Different Types of Methods..................................................................................................................17 Tasks Suited for Machine Learning.......................................................................................................20 3. Machine Learning with Python – Data Loading for ML Projects ........................................................22 Consideration While Loading CSV data.................................................................................................22 Methods to Load CSV Data File.............................................................................................................23 Load CSV with NumPy...........................................................................................................................24 Load CSV with Pandas...........................................................................................................................25 4. Machine Learning with Python – Understanding Data with Statistics...............................................27 Introduction..........................................................................................................................................27 SCODE NETWORK INSTITUTE Looking at Raw Data .............................................................................................................................27 Checking Dimensions of Data ...............................................................................................................29 Getting Each Attribute’s Data Type ......................................................................................................29 Statistical Summary of Data..................................................................................................................30 Reviewing Class Distribution.................................................................................................................31 Reviewing Correlation between Attributes ..........................................................................................32 Reviewing Skew of Attribute Distribution ............................................................................................33 5. Machine Learning with Python – Understanding Data with Visualization.........................................35 Introduction..........................................................................................................................................35 Univariate Plots: Understanding Attributes Independently .................................................................35 Density Plots .........................................................................................................................................37 Box and Whisker Plots ..........................................................................................................................38 Multivariate Plots: Interaction Among Multiple Variables ...................................................................39 Correlation Matrix Plot .........................................................................................................................39 Scatter Matrix Plot ................................................................................................................................41 6. Machine Learning with Python – Preparing Data ...............................................................................43 Introduction..........................................................................................................................................43 Why Data Pre-processing?....................................................................................................................43 Data Pre-processing Techniques...........................................................................................................43 Normalization .......................................................................................................................................44 Types of Normalization .........................................................................................................................45 Binarization ...........................................................................................................................................46 Standardization.....................................................................................................................................48 Data Labeling ........................................................................................................................................49 What is Label Encoding?.......................................................................................................................49 SCODE NETWORK INSTITUTE 7. Machine Learning with Python – Data Feature Selection ..................................................................51 Importance of Data Feature Selection..................................................................................................51 Feature Selection Techniques...............................................................................................................51 Recursive Feature Elimination ..............................................................................................................53 Principal Component Analysis (PCA).....................................................................................................54 Feature Importance..............................................................................................................................55 MACHINE LEARNING ALGORITHMS – CLASSIFICATION .......................................................56 8. Classification – Introduction................................................................................................................57 Introduction to Classification................................................................................................................57 Types of Learners in Classification ........................................................................................................57 Building a Classifier in Python...............................................................................................................57 Classification Evaluation Metrics ..........................................................................................................61 Confusion Matrix ..................................................................................................................................61 Various ML Classification Algorithms ...................................................................................................63 Applications ..........................................................................................................................................63 9. Classification Algorithms – Logistic Regression ..................................................................................64 Introduction to Logistic Regression ......................................................................................................64 Types of Logistic Regression .................................................................................................................64 Logistic Regression Assumptions..........................................................................................................64 Binary Logistic Regression model .........................................................................................................65 Implementation in Python....................................................................................................................66 Multinomial Logistic Regression Model................................................................................................69 Implementation in Python....................................................................................................................69 10. Classification Algorithms – Support Vector Machine (SVM) ..............................................................71 Introduction to SVM .............................................................................................................................71 SCODE NETWORK INSTITUTE Working of SVM....................................................................................................................................71 Implementing SVM in Python...............................................................................................................72 SVM Kernels..........................................................................................................................................76 Pros and Cons of SVM Classifiers..........................................................................................................79 11. Classification Algorithms – Decision Tree ...........................................................................................80 Introduction to Decision Tree...............................................................................................................80 Implementing Decision Tree Algorithm................................................................................................81 Building a Tree ......................................................................................................................................81 Implementation in Python....................................................................................................................82 12. Classification Algorithms - Naïve Bayes ..............................................................................................86 Introduction to Naïve Bayes Algorithm ................................................................................................86 Building model using Naïve Bayes in Python........................................................................................86 Pros & Cons...........................................................................................................................................88 Applications of Naïve Bayes classification ............................................................................................89 13. Classification Algorithms – Random Forest.........................................................................................90 Introduction..........................................................................................................................................90 Working of Random Forest Algorithm..................................................................................................90 Implementation in Python....................................................................................................................91 Pros and Cons of Random Forest..........................................................................................................93 MACHINE LEARNING ALGORITHMS - REGRESSION .............................................................95 14. Regression Algorithms – Overview......................................................................................................96 Introduction to Regression ...................................................................................................................96 Types of Regression Models .................................................................................................................97 Building a Regressor in Python .............................................................................................................97 Types of ML Regression Algorithms...................................................................................................100 SCODE NETWORK INSTITUTE Applications ........................................................................................................................................100 15. Regression Algorithms – Linear Regression ......................................................................................101 Introduction to Linear Regression ......................................................................................................101 Types of Linear Regression .................................................................................................................102 Multiple Linear Regression (MLR).......................................................................................................106 Python Implementation......................................................................................................................107 Assumptions .......................................................................................................................................108 MACHINE LEARNING ALGORITHMS – CLUSTERING ...........................................................110 16. Clustering Algorithms - Overview......................................................................................................111 Introduction to Clustering ..................................................................................................................111 Cluster Formation Methods................................................................................................................111 Measuring Clustering Performance....................................................................................................112 Silhouette Analysis..............................................................................................................................112 Analysis of Silhouette Score................................................................................................................112 Types of ML Clustering Algorithms.....................................................................................................113 Applications of Clustering...................................................................................................................114 17. Clustering Algorithms – K-means Algorithm.....................................................................................115 Introduction to K-Means Algorithm....................................................................................................115 Working of K-Means Algorithm ..........................................................................................................115 Implementation in Python..................................................................................................................116 Advantages and Disadvantages ..........................................................................................................119 Applications of K-Means Clustering Algorithm...................................................................................120 18. Clustering Algorithms – Mean Shift Algorithm .................................................................................121 Introduction to Mean-Shift Algorithm................................................................................................121 Working of Mean-Shift Algorithm ......................................................................................................121 SCODE NETWORK INSTITUTE Implementation in Python..................................................................................................................121 Advantages and Disadvantages ..........................................................................................................123 19. Clustering Algorithms – Hierarchical Clustering................................................................................124 Introduction to Hierarchical Clustering ..............................................................................................124 Steps to Perform Agglomerative Hierarchical Clustering ...................................................................124 Role of Dendrograms in Agglomerative Hierarchical Clustering.........................................................124 MACHINE LEARNING ALGORITHMS - KNN ALGORITHM....................................................130 20. KNN Algorithm – Finding Nearest Neighbors....................................................................................131 Introduction........................................................................................................................................131 Working of KNN Algorithm .................................................................................................................131 Implementation in Python..................................................................................................................132 KNN as Classifier .................................................................................................................................133 KNN as Regressor................................................................................................................................135 Pros and Cons of KNN ........................................................................................................................136 Applications of KNN............................................................................................................................136 21. Machine Learning Algorithms – Performance Metrics .....................................................................137 Performance Metrics for Classification Problems ..............................................................................137 Performance Metrics for Regression Problems..................................................................................141 22. Machine Learning with Pipelines – Automatic Workflows...............................................................143 Introduction........................................................................................................................................143 Challenges Accompanying ML Pipelines.............................................................................................144 Modelling ML Pipeline and Data Preparation ....................................................................................144 Modelling ML Pipeline and Feature Extraction...................................................................................145 23. Machine Learning – Improving Performance of ML Models ............................................................148 Performance Improvement with Ensembles......................................................................................148 SCODE NETWORK INSTITUTE Ensemble Learning Methods ..............................................................................................................148 Bagging Ensemble Algorithms ............................................................................................................149 Boosting Ensemble Algorithms...........................................................................................................152 Voting Ensemble Algorithms ..............................................................................................................154 24. Machine Learning – Improving Performance of ML Model (Contd…)..............................................157 Performance Improvement with Algorithm Tuning ...........................................................................157 Performance Improvement with Algorithm Tuning ...........................................................................157
Comments