Uploaded on May 3, 2021
At the intersection of neurology and psychiatry, FND is a prevalent condition (Perez 2021). It is characterized by motor and sensory symptoms such as tremor, limb fatigue, dystonia, numbness, and seizures, and it was formerly known as conversion disorder. These symptoms are associated with severe distress and functional impairment and have clinical features that are incompatible with other neurological/medical diagnoses. Ph.D. Assistance serves as an external mentor to brainstorm your idea and translate that into a research model. Hiring a mentor or tutor is common and therefore let your research committee know about the same. We do not offer any writing services without the involvement of the researcher. Learn More: https://bit.ly/3e3xGKf Contact Us: Website: https://www.phdassistance.com/ UK NO: +44–1143520021 India No: +91–4448137070 WhatsApp No: +91 91769 66446 Email: [email protected]
How Big data used in the treatment of Functional Neurological Disorders (FND) - Potential PhD Topics - Phdassistance
HOW BIG DATA USED IN THE TREATMENT OF FUNCTIONAL NEUROLOGICAL DISORDERS (FND) – POTENTIAL PHD TOPICS An Academic presentation by Dr. Nancy Agnes, Head, Technical Operations, Phdassistance Group www.phdassistance.com Email: [email protected] TODAY'S DISCUSSION Outline Introduction Functional neurological disorder - Need for big data: Recent research Future Scope Introduction At the intersection of neurology and psychiatry, FND is a prevalent condition (Perez 2021). It is characterized by motor and sensory symptoms such as tremor, limb fatigue, dystonia, numbness, and seizures, and it was formerly known as conversion disorder. These symptoms are associated with severe distress and functional impairment and have clinical features that are incompatible with other neurological/medical diagnoses. Few controlled treatment trials and little research has been conducted till now to assess outcomes in FND. Due to the wide range of outcomes reported in patients with respect to a functional neurological disorder, the need to study these outcomes in detail has become essential (Pick 2020). Machine learning (ML) algorithms are being used widely to collect and analyze clinical neurological data. Algorithms like Random Forest, K-Nearest Neighbour (KNN), Support Vector Machine (SVM), multi-layer perception and Artificial Neural Network (ANN) have shown promising results and can be further used to fill the gap between outcome and treatment in FND patients. Functional neurologica l disorder - Despite being a commonand disablingcondition, FND has received little attention from the scientific Need for big community. data Until recently, investigations involving the pathophysiology, etiology, and treatment of this cHoonwdeitvioenr, wtheirse hlimasi tebde.gun to change over the last few years (Nicholson 2020). Researchers from the neurology and psychiatry community have conducted several research projects to study the outcome of FND and are continuing to do to improvise their understanding of this disorder by applying ML. A variety of symptoms have been reported in FND patients, which complicates the prognosis and treatment of the condition. In people with FND, a wide range of physical, psychological symptoms along with potentially harmful coping behaviors and disease attitudes, and altered emotional functioning, lead to worse outcomes, and lower quality of life (Pick 2020). These symptoms contribute to the poor prognosis of FND, and, thus an extensive amount of research is required in this area. Fig. 2 : Different symptoms associated with FND Recent Thanks to international collaborative and research programs activities, the field of functional community neuroimaging significantly as BigData had science in the last decade. progressed Functional neuroimaging methods, such asfunctional magnetic resonance imaging (fMRI) acquired (tfMRdIu)ring resting-stateh e (rsfMtRaIs)k, magnetoencephalographya n(dMEG), electroencephalography (EEG), and other modalities are important tools for studying the human brain. They also provide methodological foundations for quantitative cognitive neuroscience. This large-scale neuroimaging big data has been significantly supported by informatics infrastructure (Li 2019). Fig. 3: Major components of big data and it’s application in treatment of functional neurological disorders (FND). In the last ten years, patient groups and an international association, the functional neurological disorder society (FNDS), have emerged marking two significant milestones in the history of disorder. COMET (core outcome measures in effectiveness trials) has been initiated in Europe that includes development instructions and a searchable database of completed core outcome sets. In the United States, the National Institute of Neurological Disorders and Stroke (NINDS) is coordinating the development of a common data element (CDE) resource portal to address a variety of conditions such as epilepsy and traumatic brain injury (Nicholson 2020). Table 1: Application of ML in the treatment of different neurological disorders For the early diagnosis of various neurological disorders, an intelligent diagnostic system has been proposed. The five layers of this framework include, data source, big data storage, data preprocessing, big data analytics and disease diagnosis. It aims to collect patient data via electronic medical records (EMRs), medical devices, IoT (internet of things) devices and research centers. This big data is then stored using different big data storage methods like, data warehouse, distributed platforms, multi-dimensional storage and cloud storage. Next, the preprocessing techniques are utilized to handle noise, missing values and remove outliers from the data. Contd... Big dataanalyticstechniques (descriptive, predictive and perspective) are used analyze the data effectively. Theobtained data is thenused to conduct diagnostic analysis using ML algorithms (Kaur 2020). Contd.. . Futur e Scope When it comes to the implementation and selection of optimal outcome measures, FND raises unique q- ureasntgioen so fa n d scyhmaplletonmgess like lack of measureme (polysymptomatic), and outcome and nt incompetent prognosis management techniques. These challenges can be possibly solved with the appropriate implementation of big data and ML. They may be useful in the diagnosis, prognosis and management of neurological disorders. A diagnostic framework can be further developed and applied for better management of FND. The analysis of big data from medical and healthcare systems can be extremely useful in developing new healthcare strategies. The most recent technical advancements in data generation, processing, and analysis have boosted hopes for a personalized medicine revolution in the near future (Dash 2019). Big data and high-performance computing technologies can thus reshape the way we deliver healthcare and conduct research. Contact Us UNITED KINGDOM +44-1143520021 INDIA +91-4448137070 EMAIL [email protected]
Comments